The communicative modus operandi of online child sexual groomers#

1www.swansea.ac.uk/project-dragon-s/2CATLISM, 350

The case study [utilised] in this section is based on the research conducted at Swansea University Department of Applied Linguistics under the supervision of Prof. Nuria Lorenzo-Dus as part of the project ‘Online Grooming Discourse’ funded by EPSRC–CHERISH-DE and NSPCC (Lead Investigator: Prof. Nuria Lorenzo-Dus). In 2021 the project evolved into Project Dragon-S1www.swansea.ac.uk/project-dragon-s/ (Developing Resistance Against Grooming Online – Spot and Shield). Outputs from the research are published in [] and [], which served as basis for the contents [described].2CATLISM, 350

3CATLISM, 353-357

Collecting the data from Perverted Justice3CATLISM, 353-357#

Script [s6.05] (adapted from [])#
  1# Import modules for: regular expressions and for working with local files; List to enforce the type of data collected
  2# (this is only required for Python < 3.9), and selected functions from Selenium
  3import re
  4import os
  5from typing import List
  6import pandas as pd
  7from selenium.webdriver import Chrome
  8from selenium.webdriver.common.by import By
  9from selenium.webdriver.chrome.options import Options
 10from selenium.common.exceptions import NoSuchElementException
 11
 12# Define the scraper as a class of objects
 13class ChatLogScraper(object):
 14    # Define the first function that sets the initial parameters: the starting URL, the regular expression to match the chatlog contents, as well as further options for Selenium
 15    def __init__(self):
 16        """Init function, defines some class variables."""
 17        self.home_url = "http://www.perverted-justice.com/?con=full"
 18
 19        # Setup and compile the regular expression for later
 20        master_matcher = r"([\s\w\d]+)[:-]?\s(?:\(.*\s(\d+:\d+:\d+\s[AP]M)\))?:?((.*)(\s\d+:\d+\s[AP]M)|(.*))"
 21        self.chat_instance = re.compile(
 22            master_matcher, re.IGNORECASE
 23        )  # ignore case may not be necessary
 24
 25        # Instantiate the firefox driver in headless mode, disable all css, images, etc
 26        here = os.path.dirname(os.path.realpath(__file__))
 27        executable = os.path.join(here, "chromedriver")
 28        # Set the headless command to run Firefox without a graphical interface
 29        options = Options()
 30        options.add_argument("--headless")
 31        self.driver = Chrome(executable_path=executable, chrome_options=options)
 32
 33    # Define the 'start' function that searches and returns all the links found in the web pages and returns them as strings
 34    def start(self) -> List[str]:
 35        """Main function to be run, go to the home page, find the list of cases,
 36        then send a request to the scrape function to get the data from that page
 37
 38        :return: list of links to scrap
 39        """
 40        print("loading main page")
 41        self.driver.get(self.home_url)
 42
 43        main_pane = self.driver.find_element_by_id("mainbox")
 44        all_cases = main_pane.find_elements(
 45            By.TAG_NAME, "li"
 46        )  # every case is under an LI tag
 47        # We'll load the href links into an array to get later
 48        links = []
 49        for case in all_cases:
 50            a_tags = case.find_elements(By.TAG_NAME, "a")
 51            # The first a tag, is the link that we need
 52            links.append(a_tags[0].get_attribute("href"))
 53        return links
 54
 55    # Define the 'scrape_page' function which, starting from the previously collected URLs, parses the content of each chatlog page and extracts the username, content (statement) and timestamp of each message
 56    def scrape_page(self, page_url: str) -> List[dict]:
 57        """Go to the page url, use the regular expression to extract the chatdata, store
 58        this into a temporary pandas data frame to be returned once the page is complete.
 59
 60        :param page_url: (str) the page to scrap
 61        :return: pandas DataFrame of all chat instances on this page
 62        """
 63        self.driver.get(page_url)
 64        try:
 65            page_text = self.driver.find_element(By.CLASS_NAME, "chatLog").text
 66        except NoSuchElementException:
 67            print("could not get convo for", page_url)
 68            return []  # Some pages don't contain chats
 69        conversations = []
 70
 71        # Next, we'll run the regex on the chat-log and extract the info into a formatted pandas DF
 72        matches = re.findall(self.chat_instance, page_text)
 73        for match in matches:
 74            # Clean up false negatives
 75            if (
 76                "com Conversation" not in match[0]
 77                and "Text Messaging" not in match[0]
 78                and "Yahoo Instant" not in match[0]
 79            ):
 80                username = match[0]
 81                if match[4]:
 82                    statement = match[3]
 83                    time = match[4]
 84                else:
 85                    statement = match[5]
 86                    time = match[1]
 87                conversations.append(
 88                    {"username": username, "statement": statement, "time": time}
 89                )
 90        return conversations
 91
 92
 93# The functions above are executed and the collected data is saved to a CSV file and a JSON file
 94if __name__ == "__main__":
 95    chatlogscrapper = ChatLogScraper()
 96    conversations = []
 97    links = chatlogscrapper.start()
 98
 99    try:
100        for index, link in enumerate(links):
101            print("getting", link)
102            conversations += chatlogscrapper.scrape_page(link)
103    finally:
104        conversations = pd.DataFrame(conversations)
105        conversations.to_csv("output.csv", index=False)
106        conversations.to_json("output.json")
4CATLISM, 360-366

Creating the final corpus4CATLISM, 360-366#

5CATLISM, 360

Script [s6.06] applies the steps described in sections ‘Emoticons’, ‘Duration and Turns’, and ‘Metadata’ to the collected CSV files and outputs an XML fle for each of them using the structure exemplified in [e6.08]5CATLISM, 360

Script [s6.06] #
  1# Import (in order) the modules to: read/write CSV files; find files using regular expressions;
  2# work with regular expressions; generate random strings; to generate random numbers; randomise data;
  3# create dictionaries (the 'defaultdict' has the ability to handle missing data in dictionaries,
  4# in contrast to Python's default dictionary); read/write XML files
  5import csv
  6import glob
  7import re
  8import string
  9from random import randint
 10import random
 11from collections import defaultdict
 12from lxml import etree
 13
 14# List all CSV files in the current folder
 15csvfiles = glob.glob("*.csv")
 16
 17# Create two dictionaries: one ('user_types_dict') to store usernames mapped against their 'role' (g = groomer, d = decoy);
 18# the other ('timings_dict') to store usernames mapped against the total amount of time it interacted with one or more decoys
 19user_types_dict = defaultdict(list)
 20timings_dict = defaultdict(list)
 21
 22# Open the metadata file (named .cs to avoid being read as a CSV chat log file) and read it as a csv file
 23metadata_file = csv.reader(
 24    open("metadata_file.cs", "r", encoding="utf-8"), delimiter="\t"
 25)
 26# For each row, do:
 27for row in metadata_file:
 28    # Read the username and its role and add the information to the dictionary 'user_types_dict'
 29    user_types_dict[row[0].lower()].append(row[1])
 30    # Read the total amount of time a groomer interacted with a decoy, and assign the value to the dictionary 'timings_dict'
 31    timings_dict[row[0].lower()].append(row[2])
 32
 33
 34# Create a function to add the type (g or d) to the username passed to the function during the data processing
 35def get_user_type(text):
 36    # Read the username, convert it to lowercase, and store it in the variable 'user'
 37    user = text.lower()
 38    # If 'user' is found in 'user_types_dict', extract its type label and store it in the variable 'usertype'
 39    if user in user_types_dict:
 40        usertype = str(user_types_dict[user][0])
 41    # Else if not found, assign the value 'na' to the variable 'usertype'
 42    else:
 43        usertype = "na"
 44    # Output the value of 'usertype'
 45    return usertype
 46
 47
 48# Create a function to add the total time of interaction to the corpus during the data processing, using the same rationale and
 49# operations employed in 'get_user_type'
 50def get_user_timing(text):
 51    username = text.lower()
 52    if username in timings_dict:
 53        timing = str(timings_dict[username])
 54    else:
 55        timing = "na"
 56    return timing
 57
 58
 59# Build the emoticons conversion steps; adapted from the emoticons.py function by Brendan O'Connor
 60# https://github.com/aritter/twitter_nlp/blob/65f3d77134c40d920db8d431c5c6faef1c051c94/python/emoticons.py
 61# Define the regular expression that will be used during the data processing to identify emoticons
 62regex_compile = lambda pat: re.compile(pat, re.UNICODE)
 63# Define the characters for eyes, nose, mouth to be used in the regular expressions; each
 64NormalEyes = r"[:=]"
 65Wink = r"[;]"
 66NoseArea = r"(|o|O|-)"
 67HappyMouths = r"[D\)\]]"
 68SadMouths = r"[\(\[]"
 69KissMouths = r"[\*]"
 70Tongue = r"[pP]"
 71
 72# Construct the possible combinations into regular expressions
 73happysmiley_regex = (
 74    "("
 75    + NormalEyes
 76    + "|"
 77    + Wink
 78    + ")"
 79    + NoseArea
 80    + "("
 81    + HappyMouths
 82    + "|"
 83    + Tongue
 84    + ")"
 85)
 86sadsmiley_regex = "(" + NormalEyes + "|" + Wink + ")" + NoseArea + "(" + SadMouths + ")"
 87kisssmiley_regex = (
 88    "(" + NormalEyes + "|" + Wink + ")" + NoseArea + "(" + KissMouths + ")"
 89)
 90# Compile the regular expressions using the previously defined 'regex_compile'
 91happysmiley_compile = regex_compile(happysmiley_regex)
 92sadsmiley_compile = regex_compile(sadsmiley_regex)
 93kisssmiley_compile = regex_compile(kisssmiley_regex)
 94
 95# Define the root <corpus> XML element tag of the output file
 96corpus = etree.Element("corpus")
 97
 98# For each CSV chat log file, do:
 99for csvfile in csvfiles:
100    # Create the <text> root element tag as child of the <corpus> root element
101    text_tag = etree.SubElement(corpus, "text")
102
103    # Create a function to generate a random ID using the 'random_number' variable (defined further below), plus a
104    # set of randomly chosen letters
105    def id_generator(N):
106        return "".join(
107            random.choices(
108                string.ascii_uppercase + string.ascii_lowercase + string.digits, k=N
109            )
110        )
111
112    # Generate a random number to be used for the creation of the unique <text> ID
113    random_number = str(randint(0, 100000000))
114    # Generate a random ID and assign it as value of the <text> attribute 'id'
115    text_tag.attrib["id"] = str(id_generator(10) + random_number)
116
117    # Create an empty list to store the usernames found in the chat log
118    usernames_list = []
119
120    # Open the chat log file and read it as a csv file
121    input_csv = csv.reader(open(csvfile, "r", newline="", encoding="utf-8"))
122    # Store the filename without extension inside the variable 'filename_without_csv'
123    filename_without_csv = csvfile.replace(".csv", "")
124    # Skip the first line of the CSV chat log file containing the columns header
125    next(input_csv, None)
126    # Iterate over each row and store them inside of the variable 'rows'
127    rows = [r for r in input_csv]
128    # For each row, count its position (starting from 1; this is equal to the turn number in the chat) and store it in
129    # the variable 'line_number', then do:
130    for line_number, row in enumerate(rows, start=1):
131        # Create the <u> element tag for the chat turn (i.e. the chat message)
132        turn_tag = etree.SubElement(text_tag, "u")
133        # Assign the row position in the csv file as value of the <u> attribute 'turn'
134        turn_tag.attrib["turn"] = str(line_number)
135        # Read the username from the first column of the chat log file, clean it from any potential leading or trailing whitespace,
136        # and assign it as value of the <u> attribute 'username'
137        turn_tag.attrib["username"] = str(row[0]).strip()
138        # Write the username (without any potential whitespace) to the list of usernames for this chat log
139        usernames_list.append(str(row[0]).strip())
140        # Read the timestamp from the third column of the chat log file and assign it as value of the <u> attribute 'time'
141        turn_tag.attrib["time"] = str(row[2])
142        # Read the date on which the message was sent from the fourth column of the chat log file, and assign it as value of
143        # the <u> attribute 'date'
144        turn_tag.attrib["date"] = str(row[3])
145        # Using the 'get_user_type' function with the username as input, extract the type of user and assign it as value of the
146        # <u> attribute 'usertype'
147        turn_tag.attrib["usertype"] = get_user_type(str(row[0]).strip())
148        # Read the chat message from the second column of the chat log file and store it inside a variable
149        message = row[1]
150        # Test for the presence of emoticons in the message using the three previously compiled regular expressions, and if found substitute it with the respective substitution-label (§_HAPPY-SMILEY_§, §_SAD-SMILEY_§, or §_KISS-SMILEY_§)
151        if happysmiley_compile.search(message):
152            message = re.sub(happysmiley_compile, " §HAPPY-SMILEY§ ", message)
153        elif sadsmiley_compile.search(message):
154            message = re.sub(sadsmiley_compile, " §SAD-SMILEY§ ", message)
155        elif kisssmiley_compile.search(message):
156            message = re.sub(kisssmiley_compile, " §KISS-SMILEY§ ", message)
157        # Assign the formatted message as text of the <u> element tag
158        turn_tag.text = message
159
160    # Read all the unique values in the list of usernames, and for each one do:
161    for username in set(usernames_list):
162        # Get the user type
163        user_type = get_user_type(username)
164        # If the user type is equal to 'g' (i.e. groomer), get the total amount of time they spent chatting and assign it to
165        # the <text> attribute 'timing', and add the groomer's username as value of the <text> attribute 'user'
166        if user_type == "g":
167            text_tag.attrib["timing"] = re.sub(
168                "(\[|\]|')", "", get_user_timing(username)
169            )
170            text_tag.attrib["user"] = username
171
172# Create the XML structure by adding all the extracted elements to the main 'corpus' tag
173tree = etree.ElementTree(corpus)
174# The resulting XML structure is written to the XML file named after the original CSV chat log file using utf-8 encoding,
175# adding the XML declaration at the beginning and graphically formatting the layout ('pretty_print')
176tree.write(
177    filename_without_csv + ".xml",
178    pretty_print=True,
179    xml_declaration=True,
180    encoding="utf-8",
181)
6CATLISM, 352-353

Sample from the final corpus6CATLISM, 352-353#

Example [e6.08]#
 1<?xml version='1.0' encoding='UTF-8'?>
 2<corpus>
 3    <text id="dz1cVUMyIB99080150" timing="1333" user="luv2licku68">
 4        <u turn="1" username="luv2licku68" time="8:54:50 PM" date="04112010" usertype="g"> hey there, how are you doing?</u>
 5        <u turn="2" username="katierella1013" time="8:54:01 PM" date="04112010" usertype="d"> hi a/s/l?  §_HAPPY-SMILEY_§ </u>
 6        ...
 7        <u turn="19" username="katierella1013" time="8:59:13 PM" date="04112010" usertype="d">
 8            well i
 9            <normalised orig="dunno" auto="true">don't know</normalised>
10            , like the stuff some people say and there's like so much going on, so many conversations
11            <normalised orig="n" auto="true">and</normalised>
12            stuff
13        </u>
14    </text>
15    ...
16</corpus>
7CATLISM, 368

Example of the interactive plot created for the visual exploration of collocations7CATLISM, 368#

Figure 6.3 Example of the interactive plot created for the visual exploration of collocations

Figure 6.3 Example of the interactive plot created for the visual exploration of collocations#

Consult the original interactive plot